Pre-, probiotics and synbiotics in constipation

Marc Benninga Emma Children's Hospital / AMC Amsterdam, the Netherlands

Outline of the presentation

- **Definition**
- Normal flora
- Prebiotics, healthy infants
- Prebiotics, constipation
- Probiotics, constipation
- Synbiotics, constipation
- Dessert

Functional constipation

- Must include <u>one month of at least two</u> of the following in infants, toddlers, children and adolescents:
 - 1. Two or fewer defecations per week
 - 2. History of excessive stool retention
 - 3. History of painful or hard bowel movements
 - 4. History of large diameter stools
 - 5. Presence of a large fecal mass in the rectum

In toilet trained children the following additional criteria may be used

- 6. At least 1 episode/week of incontinence after the acquisition of toileting skills
- 7. History of large diameter stools which may obstruct the toilet

Benninga MA, et al. Gastroenterology 2016 Hyams JS, et al. Gastroenterology 2016

Prevalence of chronic idiopathic constipation according to country

Suares NC & Ford AC, Am J Gastroenterol 2011

Mugie SM, et al. Best Pract & Res Clin Gastroenterol 2011

Rationale for the use of prebiotics in constipation

- Nonstarch polysaccharides or other substance supplements poorly digested by human enzymes that nurture probiotic organisms
 - Fructo-oligosaccharides / Inulin / Galacto-, galactosyllactose-, xylo-, isomalto and soya oligosaccharides / Pyrodextrins (glucose oligosaccharides) / Lactulose / Breast milk oligosaccharides
- Promote growth of bifido-and lactobacilli
- Lower colon pH

Rationale for the use of probiotics

- Differences in the intestinal microbiota in healthy and constipated subjects
 - $-\downarrow$ bifidobacteria
 - ↑ non-pathogenic *E coli*, bacteroides
 - \uparrow total number of microorganisms
- Improved transit time
 - Several studies involving *B. animalis* DN 173 010

Zoppi, et al. Acta Paediatr 1998 Salminen, et al. Scand J Gastro 1997 Picard, et al. Aliment Pharmacol Ther 2005

Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates

P = Prevotella, RB = Ruminococcaceae-Bacteroides

Safety and efficacy of inulin and oligofructose supplementation in infant formula: Results from a RCT

- 252 formula fed infants were randomized at birth:
- 124 controls, 128 supplementation formula and 131 BF infants; after 4 months 68 controls, 63 supplementation and 57 BF completed the study

Safety and efficacy of inulin and oligofructose supplementation in infant formula: Results from a RCT

	Control ^a	SYN1 ^b	Breastfed	
	Median (IQR)	Median (IQR)	Median (IQR)	
MONTH 1				
Stool	2.5 (2.0, 4.0)	4.0 (2.5, 5.1)***	5.0 (2.5, 7.0)	
frequency (n/day)				
Stool	6.0 (4.7, 6.0)	6.0 (6.0, 6.0)***	6.3 (6.0, 7.0)	
consistency				
score (1–7)				
MONTH 2	/		/	
Stool	2.0 (1.5, 3.0)	2.5 (2.0, 3.5)**	3.0 (1.5, 5.0)	
frequency (n/day)		(
Stool consistency	6.0 (4.3, 6.0)	6.0 (6.0, 6.0)****	6.8 (6.0, 7.0)	
score (1–7)				
MONTH 3				
Stool	2.0 (1.5, 2.5)	2.5 (1.5, 3.0)**	2.0 (1.0, 4.0)	
frequency (n/day)				
Stool consistency score (1-7)	6.0 (4.0, 6.0)	6.0 (6.0, 6.0)***	6.5 (6.0, 7.0)	
MONTH 4				
Stool	2.0 (1.5, 2.5)	2.5 (1.5, 3.0)*	1.5 (1.0, 3.0)	
frequency (n/day)				
Stool consistency score (1-7)	6.0 (4.0, 6.0)	6.0 (6.0, 6.0)***	6.5 (6.0, 7.0)	

Stool frequency and consistency by feeding groups (mean of 2-days diary).

Closa-Monasterolo N, et al. Clin Nutr 2013

Effectiveness of inulin intake on indicators of chronic constipation; a meta-analysis of controlled randomized clinical trials

Defecation frequency

Stool consistency

Yurrita LC, et al. Nutr Hosp 2014

The clinical effect of a new infant formula in term infants with constipation: a double-blind, cross-over trial

- High β-palmitic acid level
- Non digestible oligosaccharides (GOS and FOS)
- N = 38
- Only 24 completed the study

Conventional versus N. Omneo N = 35

Bongers M, et al. Nutrition J 2007

Conventional versus N. Omneo

Bongers M, et al. Nutrition J 2007

Conclusions

- Infant formula containing high proportion of *sn-2* palmitic acid and prebiotic oligosaccharides resulted in softer stools, but not in a difference in stool frequency
- Formula transition to this new formula can be considered as initial treatment step in constipated infants with *hard stools*

Probiotic Supplement Use among Young Children in Taiwan: A Prospective Cohort Study (n = 17.000)

- ~ 50% received probiotic supplements < of 18 months
- Firstborn children, native mothers, mothers with higher educational levels, higher family income, and parents who lead healthy lifestyles were positively related to probiotic supplement use among children
- Young children who were breastfed, with eczema, or with gastrointestinal tract problems were significantly positively associated with probiotic supplement use

Maternal use of probiotics during pregnancy (N = 2500) and effects on their offspring's health in an unselected population

• 341 mothers (13.7%) used probiotics during pregnancy

Consumption of probiotics was significantly associated with:

- Use of homeopathic products
- Maternal history of smoking
- Paternal history of smoking
- Common disease symptoms during first year of life in the offspring did not differ between both groups

Prophylactic Use of a Probiotic in the Prevention of colic regurgitation, and Functional Constipation: A RCT

- 589 infants were randomly allocated to receive L reuteri DSM 17938 or placebo daily for 90 days
- At 3 months of age,
 - mean duration of crying time (38 vs 71 minutes; *P* < .01)
 mean number of regurgitations per day (2.9 vs 4.6; *P* < .01),
 mean number of evacuations per day (4.2 vs 3.6; *P* < .01)
- Estimated mean savings per patient of \$118.71 for the family and an additional \$140.30) for the community

Tolerance and safety of *L. paracasei* ssp. *paracasei* in combination with *B. animalis* ssp. *lactis* in an infant formula: a RCT

- 126 new borns
- RCT:
 - Starter formula + L. paracasei ssp. Paracasei Lactis (1 x 10⁷ CFU /g) and B. animalis ssp. Lactis (1 x 10⁷ CFU /g)
 - Starter formula without probiotics
- 3 months

Results

- Normal growths in all infants
- No difference between the 2 groups with respect to:
 - gain in weight, length and head circumference
- No difference between the 2 groups with respect to:
 - crying and sleeping hours, number of infections, AB use, visits to the general practitioner and number of adverse events

Results

Vlieger AM, et al. B J Nutr 2009

Results

N = 126

Vlieger AM, et al. B J Nutr 2009

Lactobacillus Reuteri and constipation: DBRPCT

Coccorullo P, et al. J Pediatr 2010

Lactobacillus Reuteri and constipation: DBRPCT

Functional constipation in children B lactis DN 173010

Tabbers MM, et al. Pediatrics 2011

Primary outcome The change in stool frequency from baseline to after 3 wk of product consumption

Tabbers MM, et al. Pediatrics 2011

Secondary outcome Success rate ≥3 BM per wk and <1 fecal incontinence episodes in 2 wk

Tabbers MM, et al. Pediatrics 2011

Probiotics for functional constipation RCTs in children - summary

Reference	Probiotic	Constipation	Ν	Effect
Banaszkiewicz & Szajewska 2005	LGG	<3 BM per wk for at least 12 wk	60	NS
Bu et al. 2007	L casei rhamnosus Lcr35	<3 BM per wk for >2 mo	27	√(?)
Coccorullo et al. 2010	L reuteri DSM 17938	Rome III criteria	44	\checkmark
Tabbers et al. 2011	B lactis DN 173010	Rome III criteria	160	NS
Guerra et al. 2011	B longum	Rome III criteria	59	\checkmark
Total			350	

Promising foods....

 20 pts consumed 180 g per day of ordinary artichokes or artichokes enriched with L paracasei IMPC 2.1 for 15 days (daily dose of 2x10¹⁰ CFU)

Riezzo G, et al. Aliment Pharmacol Ther 2013

Change of Fecal Flora and Effectiveness of the Short-term VSL#3 Probiotic Treatment in Patients With Functional Constipation

- 30 pts fulfilling Rome III criteria for FC and 30 controls were enrolled
- Fecal samples were obtained before and after VSL#3 intake (one sachet twice daily for 2 weeks)
 - VSL#3 sachet contains 450 billion lyophilized bacteria: Bifidobacterium (B. longum, B. infantis and B. breve); Lactobacillus (L.acidophilus, L. casei, L. bulgaricus, and L. plantarum); and Streptococcus thermophilus
- Flora examined by quantitative real-time polymerase reaction

Comparison of fold differences in concentrations of gut flora between functional constipation patients and controls

Kim S-E, et al. J Neurogastroenterol Motil 2015

Fold differences in each bacterial gene expression; healthy controls

Fold differences in each bacterial gene expression; constipated patients

Bristol stool scale and mean complete spontaneous bowel movement before and after VSL#3

Kim S-E, et al. J Neurogastroenterol Motil 2015

After the VSL#3 ingestion period ended

Kim S-E, et al. J Neurogastroenterol Motil 2015

Role of Synbiotics in the Treatment of Childhood Constipation: A Double-Blind Randomized Placebo Controlled Trial

- 102 children, 4-12 yrs of age, Rome III criteria
- Group A, received 1.5 ml/kg/day oral liquid paraffin +placebo
- Group B, 1 sachet synbiotic/day + placebo
- Group C, 1.5 ml/kg/day oral liquid paraffin + 1 sachet synbiotic/day
- Protexin CO, UK 1x109 CFU/1 sachet:
 - Combination of probiotic strains: L. casei,L. rhamnosus, S. thermophilus, B. breve, L.acidophilus, B. infantis and fructooligosaccharide as prebiotic

Characteristic	Liquid paraffin + Placebo	Synbiotics + Placebo	Liquid paraffin + Synbiotics	P value
No of patients at randomization (%)	29 (29.9)	31 (32.0)	37 (38.1)	
No. of encopresis per week pretreatment (±SD)	2.34 (±4.9)	2.68 (±4.7)	0.92 (±2.9)	0.208
No. of Encopresis per week after treatment (±SD)	0.24 (±1.3)	0.06 (±0.25)	0.0 (±0.0)	0.317
No. of patients with abdominal pain pretreatment (%)	17 (58.6)	21 (67.6)	24 (64.9)	0.754
No. of patients with abdominal pain after treatment (%)	4 (13.8)	2 (6.5)	5 (13.5)	0.582
No. of patients with side effects (seepage) (%)	18 (62.1)	0 (0)	21 (56.8)	< 0.001
No. of patients with successful treatment (%)	24/29 (82.8)	22/31 (71.0)	28/37 (75.7)	0.559

Khodadad A, et al. Iran J Pediatr 2010

Therapeutic Potential of Fecal Microbiota Transplantation

Smits LP, et al. Gastroenterology 2013

Treatment of Slow Transit Constipation With Fecal Microbiota Transplantation; A Pilot Study

- 20 pts, Rome Ill-constipation not responsive to conventional treatment including biofeedback training
- Received FMT on 3 consecutive days through nasojejunal tube and followed up for 12 weeks after treatment

Treatment of Slow Transit Constipation With Fecal Microbiota Transplantation; A Pilot Study

Clinical remission rate (%)	1 wk	66.7% (16/24)
60 CONTROL DI NOCET DE L'ACTORIS 1980 1980	2 wk	62.5% (15/24)
	4 wk	62.5% (15/24)
	8 wk	50% (12/24)
	12 wk	37.5% (9/24)
Stool consistency score‡	Pre-FMT	$2.1 \pm 1.7^{*}$
	1 wk	$3.1 \pm 0.6^{*}$
	2 wk	$3.8 \pm 1.1^{*}$
	4 wk	$3.6 \pm 2.1^{*}$
	8 wk	$3.5 \pm 2.3^{*}$
	12 wk	$3.1 \pm 2.4^{*}$
No. bowel movement per	Pre-FMT	$1.8 \pm 1.3^{*}$
week‡		
	1 wk	$3.1 \pm 2.2^{*}$
	2 wk	$4.1 \pm 2.0^{*}$
	4 wk	$4.7 \pm 2.2^{*}$
	8 wk	$4.5 \pm 1.4^{*}$
	12 wk	$4.1 \pm 2.6^{*}$

Tian H, et al. J Clin Gastroenterol 2016

Treatment of Slow Transit Constipation With Fecal Microbiota Transplantation; A Pilot Study

• Adverse effects; diarrhea, bloating, abdominal pain

Tian H, et al. J Clin Gastroenterol 2016

Summary & Conclusions

- Knowledge is lacking regarding the microbiota composition of children with constipation
- The addition of prebiotics/probiotics in infant formula is safe and softens stool
- Inulin seems to be effective in adults with constipation, trials in children with constipation are lacking
- Inconsistent data exist regarding the efficacy of probiotics in children with constipation
- Future studies to determine whether therapeutic strategies aimed at restoration of observed microbial dysbalance are benificial