MICROBIOTA, PROBIOTICS AND CYSTIC FIBROSIS

Dr. Bruno Hauser
CF Center and Unit of Paediatric Gastroenterology, Hepatology and Nutrition
UZ Kinderziekenhuis Brussel, Brussels, Belgium
bruno.hauser@uzbrussel.be
1. Introduction
2. Intestinal inflammation
3. Intestinal microbiota
4. Probiotics
5. Conclusions

No conflict of interest to declare
Introduction

- Cystic fibrosis - Mucoviscidosis
- Hereditary disease:
 - autosomal recessive
 - identification genetic defect on chromosome 7 in 1989
- In all populations:
 - variable frequency
 - highest in Caucasians
- Belgium:
 - carriers: 1/20 to 1/30
 - patients: 1000 to 1500 (40 new diagnoses/year)
- Europe: 50,000 patients – rare disease
Basic defect

CFTR gene
- 27 exons
- 2224 nucleotides
- 2000 mutations

CFTR protein =
- 1480 amino-acids

F508del

Discovered 1989

CFTR: Cystic Fibrosis Transmembrane Regulator
CFTR protein function

- Ion channel at the apical surface of epithelial membranes
- Impairment of chloride secretion and subsequently secretion of water and other ions
Multi-organ disease

Impaired function in all organs with exocrine glands

lower en upper airways
pancreas
liver – gal bladder
intestine
genital system
skin (sweat)
Intestinal inflammation

- Repeated and/or chronic antibiotic exposure
- Low pH due to exocrine pancreatic insufficiency
- Intestinal dysmotility

Lumen

- Thick mucus
- Bacterial overgrowth and altered bacterial composition
- Calprotectin

Mucosa

- CFTR
- CF INTESTINE

Intestinal epithelial cells

- Inflammatory stimuli (e.g., IL-1, LPS)
- Increased inflammatory response

Neutrophils

Lee 2012
1. Introduction
2. Intestinal inflammation
3. Intestinal microbiota
4. Probiotics
5. Conclusions
Cystic fibrosis and intestinal inflammation

- **Van Biervliet S (1999 and 2003):** mucosal damage and decreased intestinal alkaline phosphatase:
 - 19/61 CF infants at diagnosis with mucosal damage on duodenal biopsy
 - IAP important in defence against bacterial overgrowth

- **Hendriks HJE (2001):** increased intestinal permeability:
 - 13/14 stable CF children with abnormal lactulose/mannitol test
 - partly corrected with Lansoprazole

- **Werlin SL (2010):** **cystic fibrosis enteropathy**:
 - 26/41 CF adults/children without overt GI disease with small bowel abnormalities on capsule endoscopy (diffuse areas of inflammatory findings with edema, erythema, mucosal breaks and ulcerations)
 - Fecal Calprotectin (FCP) abnormal in 18/30 (60%) CF patients
Cystic fibrosis and intestinal inflammation

- **Lisowska A (2010):** intestinal inflammation and small intestine bacterial overgrowth (SIBO):
 - FCP CF patients > FCP healthy controls
 - FCP abnormal in 21/25 (84%) CF patients vs 0/30 healthy controls
 - SIBO in 40% of CF patients but FCP SIBO+ = FCP SIBO-

- **Rumman N (2014):** intestinal inflammation and gastrointestinal symptoms:
 - no significant difference in GI symptoms in 62 CF patients with normal and abnormal FCP

- **Dhaliwal J (2015):** intestinal inflammation and growth in children:
 - FCP 30 Crohn disease > FCP 28 CF patients > FCP 47 healthy controls
 - FCP abnormal in 17/28 (61%) CF patients
 - FCP correlates significantly with poor growth
Adriaanse MP (2015): enterocyte damage - intestinal inflammation and nutritional status - CF related morbidities:

- 86 CF patients and 107 healthy controls
- serum intestinal fatty acid binding protein (I-FABP = marker enterocyte damage) and FCP
- I-FABP in CF patients > I-FABP healthy controls
- FCP abnormal in 93% CF patients
- I-FABP correlates negatively with lung function in children
- FCP correlates negatively with lung function in adults
- FCP is significantly associated with the presence of pancreatic insufficiency, CF related diabetes and use of proton pump inhibitors
- enterocyte damage and intestinal inflammation in CF patients + inverse correlation between enteropathy and lung function + association of enteropathy with CF related morbidities
Cystic fibrosis and intestinal inflammation

- **Flas T (2015):** intestinal inflammation, intestinal microbiome and cirrhosis:
 - 11 CF with cirrhosis (CFCIR) + 19 CF with no liver disease (CFnoLIV)
 - FCP: elevated in most patients but similar in CFCIR and CFnoLIV
 - Intestinal permeability testing by urinary lactulose/mannitol excretion ratio: elevated in most patients and slightly lower in CFCIR
 - Small bowel transit time: longer in CFCIR
 - Small bowel endoscopy: more severe intestinal mucosal lesions in CFCIR
 - Fecal microbiome: ↓ *bacteroides* - associated with lower capsule endoscopy scores in CFCIR ; ↑ *Clostridium* - associated with higher capsule endoscopy scores in CFCIR
 - Abnormal intestinal permeability and elevated FCP in CF patients + increased intestinal mucosal lesions, slower small bowel transit and alterations in faecal microbiome in CFCIR
 - Disturbances in intestinal function combined with changes in microbiome may contribute to the development of hepatic fibrosis and intestinal lesions
1. Introduction
2. Intestinal inflammation
3. Intestinal microbiota
4. Probiotics
5. Conclusions
Cystic fibrosis and intestinal microbiota

- **Duytschaever G (2011 and 2012):**
 - ↓ lactic acid bacteria - *Clostridia* – *Bifidobacterium spp* - *Veillonella spp* - *Bacteroides Prevotella spp*; ↑ enterobacteria
 - cross-sectional data: predominant fecal microbiota has comparable species richness in CF patients and healthy controls
 - longitudinal data: lower temporal stability and lower species richness in the predominant fecal microbiota in CF patients
 - first evidence of **general dysbiosis** in CF patients

- **Duytschaever G (2013):**
 - significantly lower abundance and temporal stability of *Bifidobacteria* and *Clostridium cluster XIVa*
 - first report of specific microbial determinants of dysbiosis in CF patients
Cystic fibrosis and intestinal microbiota

- **Scanlan PD (2012):** ↓ species richness and diversity

- **Bruzzese E (2014):** ↓ *Eubacterium rectale, Bacteroides uniformis, Bacteroides vulgatus, Bifidobacterium adolescentis, Bifidobacterium catenulatum* and *Faecalibacterium prausnitzii*

- **Del Campo R (2014):** ↑ *Proteobacteria* and *Actinobacteria* ; ↓ *Firmicutes* and *Bacteroidetes*

- **Hoffman LR (2014):** ↑ *Escherichia coli*

- **Debyser G (2015):** ↑ host proteins involved in inflammation and mucus formation → ↓ *Faecalibacterium prausnitzii* ; ↑ *Enterobacteriacea, Ruminococcus gnavus* and *Clostridia species*
1. Introduction
2. Intestinal inflammation
3. Intestinal microbiota
4. Probiotics
5. Conclusions
Probiotics and CF (1)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Probiotic</td>
<td>LGG</td>
<td>Mixture (7 types)</td>
<td>LGG</td>
</tr>
<tr>
<td>Patient type (n)</td>
<td>CF (30) (10 LGG) Co (30)</td>
<td>CF (47) (24 probiotics)</td>
<td>CF (22) (10 LGG) Co (?)</td>
</tr>
<tr>
<td>Study type</td>
<td>Prospective (1m)</td>
<td>RDBPC (1m)</td>
<td>RDBPC (1m)</td>
</tr>
<tr>
<td>Effect</td>
<td>FCP (rectal NO)</td>
<td>FCP</td>
<td>FCP (rectal NO)</td>
</tr>
<tr>
<td></td>
<td>CF > Co 27/30 (90 %) ▲ LGG: FCP▼</td>
<td>31/47 (66%) ▲ Probiotics: 21/24 FCP▼</td>
<td>CF > Co 12/19 (63 %) ▲ LGG: FCP▼</td>
</tr>
<tr>
<td></td>
<td>Microbiome:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>dysbiosis (▲ if antibiotics) LGG: biodiversity ▲ Reduced microbial richness ≈ intestinal inflammation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Probiotics and CF (2)

<table>
<thead>
<tr>
<th>Probiotic</th>
<th>Patient type (n)</th>
<th>Study type</th>
<th>Effect</th>
<th>Microbiome:</th>
</tr>
</thead>
<tbody>
<tr>
<td>L Reuteri</td>
<td>CF (2x30)</td>
<td>RDBPC cross-over (6m)</td>
<td>FCP: ▼</td>
<td>dysbiosis</td>
</tr>
<tr>
<td>L Reuteri</td>
<td>CF (61) (30 L Reuteri)</td>
<td>RDBPC (6m)</td>
<td>FCP: =</td>
<td>L Reuteri: biodiversity ▲ bacterial density ▼</td>
</tr>
<tr>
<td>LGG</td>
<td>CF (20)</td>
<td>Prospective (1m)</td>
<td>50 % bacterial overgrowth</td>
<td></td>
</tr>
</tbody>
</table>

- **GI comfort:** ▲
- **Pulmon F exacerbations:** ▼
- **URTI:** ▼
- **pulm function:** =
- **hospitalisation:** =
- **TNF alfa/IL8:** =

GI comfort: ▲
Stool appearance: ▲
Stool number: ▼
Stool fat and sugar: ▼
Probiotics and CF (3)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Patient type (n)</td>
<td>CF (2x19)</td>
<td>CF (10)</td>
<td>CF (37) (20 probiotics)</td>
<td>CF (61) (30 L Reuteri)</td>
</tr>
<tr>
<td>Study type</td>
<td>RDBPC cross-over (6m)</td>
<td>Prospective (6m)</td>
<td>RDBPC (1m)</td>
<td>RDBPC (6m)</td>
</tr>
<tr>
<td>Effect</td>
<td>Pulmon F: exacerbations ▼ FEV1 ▲ Hospitalisations ▼ Weight ▲</td>
<td>Pulmon F: exacerbations ▼ pulm function = Sputum bacteria/neutrophils /IL8 =</td>
<td>Pulmon F: exacerbations▼ QOL ▲ at 3 m but not at 6m</td>
<td>Pulmon F: exacerbations▼ URTI ▼ pulm function = Hospitalisation = TNF alfa/IL8 = FCP =</td>
</tr>
</tbody>
</table>
Probiotics and CF: Belgian study

- **Type**: RDBPC cross-over (2 x 4 months)

- **Patients**: mild to moderate disease; 4 - 14 years; 100 → 25

- **Probiotics**: 10.10⁹ CFU 1 capsule / day

 Lactobacillus rhamnosus vésalius 001 LMG S-28148

 Bifidobacterium animalis subsp. lactis vésalius 002 LMG 23512

- **Primary outcomes**: pulmonary exacerbations

- **Secondary outcomes**: gastro-intestinal symptoms, general well-being, growth, hospitalisations, intestinal inflammation – permeability – microbioma, pulmonary function – sputum cultures
Flow chart

Period A
4 months
- Physical
- W, H, BMI s.d.
- Sputum culture
- Gut permeability
- Calprotectine
- Laboratory
- QoL

Wash out
1 month

Period B
4 months
- Physical
- W, H, BMI s.d.
- Sputum culture
- Gut permeability
- Calprotectine
- Laboratory
- QoL
1. Introduction
2. Intestinal inflammation
3. Intestinal microbiota
4. Probiotics
5. Conclusions
Conclusions

- **Cystic fibrosis:**
 1) Chronic intestinal inflammation and abnormal balance of the microbiota
 2) Chronic intestinal inflammation may be a driver for systemic inflammation

- **Studies with probiotics show:**

<table>
<thead>
<tr>
<th></th>
<th>LGG</th>
<th>LR</th>
<th>Mixtures</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) Restoration of intestinal microbiota</td>
<td>+</td>
<td>+</td>
<td>NS</td>
</tr>
<tr>
<td>2) Reduction intestinal inflammation</td>
<td>+</td>
<td>+/-</td>
<td>+</td>
</tr>
<tr>
<td>3) Reduction pulmonary exacerbations</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4) Improvement lung function</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>4) Improvement gastro-intestinal health</td>
<td>+</td>
<td>+</td>
<td>NS</td>
</tr>
<tr>
<td>5) Improvement general well-being</td>
<td>NS</td>
<td>NS</td>
<td>+</td>
</tr>
<tr>
<td>6) Reduction hospitalisation</td>
<td>+</td>
<td>-</td>
<td>NS</td>
</tr>
</tbody>
</table>

- **Mandatory before general use of probiotics in cystic fibrosis:**
 1) Proven efficiency in well designed clinical trails
 2) Proven safety
Conclusions

The clinical significance of the gut microbiota in cystic fibrosis and the potential for dietary therapies

Li L, Somerset S. Clin Nutr 2014; 33:571-80