


Review

Thickened infant formula: What to know

Silvia Salvatore M.D., Ph.D. ^a, Francesco Savino M.D. ^b, Maartje Singendonk M.D. ^c,
Merit Tabbers M.D., Ph.D. ^c, Marc A. Benninga M.D., Ph.D. ^c, Annamaria Staiano M.D., Ph.D. ^d,
Yvan Vandenplas M.D., Ph.D. ^{e,*}

^a Clinical Pediatrica di Varese, Università dell'Insubria, Varese, Italy

^b Ospedale Infantile Regina Margherita, Città della Salute e della Scienza di Torino, Torino, Italy

^c Department of Pediatric Gastroenterology and Nutrition, Emma Children's Hospital AMC, Amsterdam, The Netherlands

^d Department of Translation Medical Science, Section of Pediatrics, University of Naples, Federico II, Italy

^e Department of Pediatrics, UZ Brussel, Vrije Universiteit Brussel, Brussels, Belgium

ARTICLE INFO

Article history:

Received 29 July 2017

Received in revised form

21 September 2017

Accepted 5 October 2017

Keywords:

Antiregurgitation formula
Thickened formula
Thickening agents
Regurgitation
Gastroesophageal reflux
Infants

ABSTRACT

Objectives: This study aimed to provide an overview of the characteristics of thickened formulas to aid health care providers manage infants with regurgitations.

Methods: The indications, properties, and efficacy of different thickening agents and thickened formulas on regurgitation and gastroesophageal reflux in infants were reviewed. PubMed and the Cochrane database were searched up to December 2016.

Results: Based on the literature review, thickened formulas reduce regurgitation, may improve reflux-associated symptoms, and increase weight gain. However, clinical efficacy is related to the characteristics of the formula and of the infant. Commercial thickened formulas are preferred over the supplementation of standard formulas with thickener because of the better viscosity, digestibility, and nutritional balance. Rice and corn starch, carob bean gum, and soy bean polysaccharides are available as thickening agents. Hydrolyzed formulas have recently shown promising additional benefit.

Conclusions: Thickened formulas reduce the frequency and severity of regurgitation and are indicated in formula-fed infants with persisting symptoms despite reassurance and appropriate feeding volume intake.

© 2017 Elsevier Inc. All rights reserved.

Conflicts of interest: S.S. has participated as a consultant and/or speaker for Danone–Nutricia, Deca, IMS-Health, Menarini, Nestlè. F.S. has participated as a consultant and/or speaker for Menarini, Danone, Nutricia, HiPP GmbH, Nestlè, and BioGaia. A.S. has participated as a clinical investigator, and/or advisory board member, and/or consultant, and/or speaker for D.M.G., Valeas, Angelini, Miltè Menarini, Danone, Nestlè. M.A.B. has participated as a clinical investigator, and/or advisory board member, and/or consultant, and/or speaker for Astrazeneca, Norgine, Coloplast, Zeria, Sucampo, Shire, Mead Johnson, Danone, Abbott, Frieslandcampina, Novalac, and Sensus. Y.V. has participated as a clinical investigator, and/or advisory board member, and/or consultant, and/or speaker for Abbott Nutrition, Biogaia, Biocodex, Danone, Hero, Nestle Nutrition Institute, Nutricia, Mead Johnson, Merck, Orafti, Phacobel, Sari Husada, United Pharmaceuticals, Wyeth, and Yakult. The other authors did not report any conflicts of interest. All the referenced manufacturers and companies had no input or involvement in any aspect of this review or any other previous reviews carried out by the authors. There are no other interests to declare.

Sources of support: This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

* Corresponding author. Tel.: +32 (0)24775781; fax: +32 (0)24775783.

E-mail address: Yvan.vandenplas@uzbrussel.be (Y. Vandenplas).

Introduction

Infantile regurgitation is a common, physiological, transient manifestation of gastroesophageal reflux (GER) that does not require treatment but only parental reassurance and dietary management [1–4]. Thickened formulas (TFs) are indicated in infants who are formula-fed and have persistent regurgitation and poor weight gain [1,3] or marked distress [4] instead of overprescribed acid inhibitors [5–7].

Different antiregurgitation formulas (AR-F) are available on the market [8] and frequently used [9]. However, the advantages and disadvantages with regard to cost as well as nutritional and gastrointestinal effects should be carefully balanced [10]. The aim of this narrative review was to provide an updated overview of the rationale for and characteristics of AR-F to aid health care providers manage infants with regurgitation.

Materials and methods

We searched PubMed up to December 2016 using the following keywords: "antiregurgitation" OR "thickened formula" OR "thickening agents" AND "regurgitation" OR "gastro (o) esophageal reflux" OR "GER" OR "GOR" and restricted the search to publications on humans and infants. Intervention trials, reviews, guidelines, meta-analyses, and reference lists of these studies were considered.

Results

Rationale for antiregurgitation formulas

Despite the spontaneous remission in most infants, voluminous and persistent regurgitation is a frequent reason for parental concern, formula changes, and feeding distress [9,11–15]. The rationale for AR-F is based on the addition of a thickening agent (e.g., cereal starch or carob/locust bean gum flours) to increase its viscosity [8,10,16].

Viscosity and digestibility of antiregurgitation formulas

In vitro models have demonstrated that carob seed flour is the thickening agent with the highest viscosity and particularly in predominant casein formula [17,18]. The digestibility of carbohydrates that are added to infant formula has long been a matter of concern [19–22]. To convert starch to glucose, six enzymes (two salivary and pancreatic alpha-amylases, sucrase-isomaltases, and maltase-glucoamylases) are involved [23]. Sucrase-isomaltases and maltase-glucoamylases are the key enzymes that digest starch in young infants before pancreatic alpha-amylase secretion matures [24].

The starch digestion rate is correlated to its chemical structure and determined by the different botanic sources, concentrations, food processing techniques, and the age of the infant [23,25]. The crystalline structures that are observed in x-ray diffractions classify starch granules into Type A (e.g., wheat, normal maize, and rice), B (e.g., potato and green banana), and C (e.g., beans and seeds) on the basis of high, low, or intermediate susceptibility to hydrolysis [23]. The increasing resistance to hydrolysis from waxy maize to tapioca, sorghum, ordinary corn, wheat, rice, potato, and high-amylase corn has been attributed to both the ratio of amylose and the surface pores that facilitate the access of enzymes [25]. However, cooking and gelatinization change the granular structure of the native starch and decrease the resistance to enzymatic attack and the differences between the varieties [22–24].

In infants, wheat, tapioca, corn, rice, or potato starch that is cooked for 10 min in water are all digested and efficiently (>98%) absorbed when the concentration is 1.6 g to 1.9 g/100 mL at 1 mo and 3.1 g to 3.5 g/100 mL at 3 mo of age. However, at 5 g to 6 g/100 mL, fermentative diarrhea has been reported in 2 of 5 infants who were tested [24]. An expert group from the European Society for Paediatric Gastroenterology Hepatology and Nutrition recommended that (precooked or gelatinized) starches be added to the infant formula up to 2 g/100 mL [26].

Locust bean gum is a different thickening agent that is obtained from the endosperm seed of the locust/carob tree (*Ceratonia siliqua* [L.] Taub) of the plant family of Leguminosae, which consists of high molecular weight polysaccharides (50 000–3 000 000 dalton) of which at least 75% are galactomannans. Locust bean gum is coded as INS/E 410 in accordance with food additive numbering and commonly used in various food items for thickening, stabilizing, emulsifying, or gelling properties. Locust bean gum is resistant to human digestive enzymes and excreted unchanged in the feces or fermented by the gut microbiota [27].

(Home) thickening compared with antiregurgitation formulas

Many parents use AR-F or add thickening agents to standard formula (SF) to reduce infants' regurgitation and/or vomiting, improve night sleep, and decrease failure to thrive [9]. Commercial AR-F has a controlled composition with thickening components less than 2 g/100 mL for starch and 1 g/100 mL for carob bean gum, and a caloric content that is similar to SF. Moreover, pretreated (e.g., gelatinized) starch presents a low viscosity that allows for an easy flow through a standard nipple and thickens only in the stomach when in contact with acid potential hydrogen (pH) [28]. In contrast, carob bean gum maintains a constant viscosity because it is not split by salivary amylase and not influenced by pH.

Home-brewed thickened SF are often prepared by parents because of the limited availability or higher (1.5–2 times) cost of AR-F but the effects of home-thickened feeding may differ from AR-F due to a heterogeneous composition. One study reported that a heaping tablespoon added a quantity of starch between 3.6 g and 4.6 g [29], which was well above the regulatory limit for starch (2 g/100 mL) in AR-F [26,30], increased the osmolarity of the formula, and provided an extra caloric intake of 20 calories per 100 mL. Moreover, overthickening of formula results in a higher viscosity that needs an increased sucking effort and/or a crosscut nipple to flow through [17,18,31–34]. Hence, parents should receive clear advice about thickening modalities in case of home-brewed TFs.

In a prospective, case-controlled study of 100 infants, regurgitation disappeared after 3 mo in a slightly higher percentage of infants (52% vs. 40%) who were fed AR-F versus a home-made, cornstarch TF [35].

Clinical effects of antiregurgitation formulas

Gastric emptying

A thickening agent (particularly a fiber) may delay gastric emptying and potentially worsen postprandial GER and symptoms but its effect depends on viscosity and concentration [36] as well as protein content. Antral cross-sectional areas that were measured by ultrasound were not significantly different in 47, 20, and 20 infants who frequently regurgitated and were fed a locust bean gum AR-F or SF (0.35 g/100 mL; 0.4 g/100 mL; and 0.6 g/100 mL, respectively). However, antral cross-sectional areas were greater in another trial that used a different formula (HL-450) in 39 infants [37–40].

In 63 of 81 infants who regurgitated, corn starch AR-F had a gastric emptying time as measured by technetium 99 m milk scintigraphy that was similar to SF [41] and faster than a 25% strengthened formula [42].

In 90 healthy infants, the gastric residual content 2 h after feeding was the smallest with whey-hydrolyzed formula (HF) and breast milk and progressively higher with acidified, whey-predominant, casein, follow-up formula and whole cow's milk [43]. In 28 infants with GER, scintigraphy showed that gastric emptying significantly increased after feeding infants the same volume and calories of a casein-predominant, soy, or whey-partial HF (pHF) [44].

In a crossover, randomized, controlled trial (RCT) that performed 13 C-octanoic acid breath tests in 20 healthy newborns, extensive HF (eHF) significantly accelerated the gastric emptying compared with pHF and intact proteins SF [45].

In a 2-wk, crossover, double-blind trial, 12 infants who frequently cried and regurgitated showed significantly reduced symptoms and gastric emptying time (as assessed by 13-C acetate

Table 1

Summary of trials that report the effect, expressed as (mean) episodes of regurgitation, with thickened formulas

Reference	At inclusion	With AR-formula (after 1–4 wk)	Thickening agent
Miyazawa et al. [38] (7 d)	22.6 ± 3.9 29.8 ± 3.6	12.9 ± 3.5 12.8 ± 3.0	Carob
Overall recalculated per d (HL 350)	3.74	1.84	
(HL 450)	3.2 ± 0.6	1.85 ± 0.5	
Miyazawa et al. [39]	4.2 ± 0.5	1.8 ± 0.4	
Vivatkavin et al. [40]	5.2	3.2	Carob
Vandenplas et al. [50]	5.7 ± 2.13	2.25 ± 1.45	Carob
Wenzl et al. [51] (n = episodes GER on MII-pH over 342 h)	8.25	2.32 or 1.89	Carob
Recalculated per d	68	15	Carob
Chao et al. [41]	4.77	1.05	
Chao et al. [42]	3.71 ± 0.69	2.39 ± 0.86	Corn
Hegar et al. [13]	4.19 ± 1.71	0.93 ± 0.42	Corn
Xinias et al. [52]	5.9 ± 1.7	3.3 ± 2.3	Carob
Moukarzel et al. [53]	5.60 ± 4.15	2.57 ± 2.71	Corn
Moya et al. [54]	5.2 ± 3.1	2.3 ± 2	Corn
Vanderhoof et al. [28]	4.5 ± 2.1	2.9 ± 1.6 (with corn) 2.2 ± 1 (with carob)	Corn
Khoshoo et al. [29]	13 ± 1	6 ± 1	Rice
Mean number of regurgitations per d (all studies)	4.33 ± 0.51	2.83 ± 0.40	Rice
	5.43	2.50	

AR, antiregurgitation; GER, gastroesophageal reflux; MII-pH, multichannel intraluminal impedance and potential hydrogen.

breath test) when they were fed a whey-pHF with a combination of thickeners (bean gum and processed tapioca starch) compared with an intact-protein casein-predominant (single) TF [46].

Regurgitation

In 1987, Orenstein et al. first reported that a 4% rice starch TF decreased regurgitation and crying and increased sleeping time in 20 infants despite an unchanged number of reflux episodes that was documented by scintigraphy [47]. In the same year, Vandenplas and Sacre showed a decrease of GER symptoms in 25 of 30 infants who were fed with a carob bean gum (1 g/115 mL) TF with a normalization of all reflux parameters as measured by pH-monitoring in six infants [48]. In 2002, a Cochrane systematic review on thickeners for infants with GER did not find any studies that fulfilled the requirements for inclusion [49]. Since then, several RCTs have reported a reduction in

the daily number of episodes of regurgitation from a mean of 5.4 episodes per day to 2.5 episodes per day over a period of 1 to 4 wk (Table 1) in infants who were fed rice [28,29,41], corn [42,52–54], and locust bean gum [13,14,39,40,46,50,51,55] AR-F. However, the design of each study largely differed in inclusion criteria, research methods, duration of intervention, and formula and/or thickener tested, making the figure of a 50% in reduction only indicative. The overall characteristics and effects of thickener agents are summarized in Table 2.

In 2008, a meta-analysis including 14 RCTs with different thickening agents added to SF or AR-F concluded that TFs decreased the number of episodes of regurgitation and vomiting, significantly increased the percentage of infants without regurgitation, and increased weight gain [16]. No particular thickening agent was shown to be more effective than another. In the pooled analysis of six studies and 369 infants, the decrease in regurgitation ranged from 0.6 to 1.8 episodes per day on the basis of different statistical (fixed or random-effects) models that were

Table 2

Summary of characteristics and effects of different thickeners

a. Clinical effect										
Thickener agent	Viscosity	Ref.	Digestion	Ref.	Gastric emptying	Ref.	Regurgitation	Ref.	GER/pH results	Ref
Carob/ locust bean gum	↑↑	[17,18]	No	[27]	↓ =	[38–40]	↓	[13,14,38–40, 46,48,50,51,55]	↓n ↑longest episode ↓RI%	[48]
Corn starch	↑		=	[23–25]	=	[41]	↓	[31,42] [52–54]	↓all ↓RI%	[33,51,55]
Rice starch	↑		=		Unknown	None	↓	[28,29,31,41,47]	↓n =RI% =	[29]
b. Regulation and adverse effects										
Thickener agent	Concentration (max limit)				Ref.	Adverse effect			Ref	
Carob/locust bean gum	1 g/100 mL				[19,20]	Diarrhea			[14,38,39]	
Corn starch	2 g/100 mL				[30]	—			—	
Rice starch	2 g/100 mL				[30]	Cough Constipation Arsenic load			[32] [31,56] [57]	

GER, gastroesophageal reflux; pH, potential hydrogen; Ref, reference; RI, reflux index; ↑, increased; No, Undigested; =, normal or no change; ↓, decreased.

used. Thickened or AR-F was associated with a statistically significant increase in weight gain (3.5–3.7 g/d) compared with SF according to four RCTs that enrolled 265 infants [16]. Only one study evaluated the efficacy of a soy-fiber (6 g/L) TF in 66 newborns with a small reduction (−0.4) in the number of episodes of regurgitation/vomiting per day after 4 wk of intervention compared with 89 infants who were fed SF [58].

Recently, an RCT of 77 infants with GER symptoms compared the effect of a highly concentrated rice starch (14.3 g/100 mL) TF with an SF in addition to parental reassurance and with treatment with alginate and simethicone [59]. After 2 mo of intervention, all three groups showed a significant reduction in symptoms with a slightly better score in the alginate group [59].

Thus, AR-F decreased visual regurgitation and may reinforce the effects of parental reassurance. Additional effects such as improved sleeping and decreased irritability, cough, and choking also have been reported [28,42] but not reputed relevant [8].

Discussion

Comparison of antiregurgitation formulas

There are limited comparative studies. According to two trials of 24 and 60 infants, carob antiregurgitation reduced regurgitation better than a rice flour (5 g/100 mL) TF [13,55] and parental reassurance plus SF [13]. In 52 infants, a casein-predominant AR-F with pregelatinized cornstarch but not whey-based 5% rice TF reduced vomiting [31].

In another study, 168 infants who were fed cereals that were thickened with whey pHF showed significantly reduced regurgitation by 1.1 and 1.3 episodes per day after 7 and 14 d compared with a SF [60]. Yet another study of 115 infants who were fed a double (i.e., treated starch and locust bean gum) AR pHF showed decreased regurgitation better than a locust bean gum AR-F [50]. A rice-thickened eHF decreased GER symptoms in 40 infants [61]. Thickened (with a specific starch complex at 1 g/100 mL and 3.6 g/100 g of mainly pectin fibers) and nonthickened casein eHF reduced GER symptoms in infants with both negative and positive cow's milk allergy [62,63].

Preterm infants

In preterm infants with GER symptoms a casein eHF significantly reduced the reflux index and number of acid episodes compared with preterm SF [34]. In 28 preterm newborns, amylopectin TFs reduced the number of acid reflux episodes as detected by pH-monitoring but not reflux index, acid, nonacid, and proximal GER as detected by esophageal impedance [64].

Reflux parameters

Eight studies analyzed the effect of AR-F/TF on reflux parameters (Table 2).

Carob/locust bean gum

In 1987, Vandenplas and Sacre reported a normalization of all pH-monitoring parameters in 6 of 30 infants who were fed a carob bean gum (1 g/115 mL) TF. In the remaining 24 infants, the total number of reflux episodes significantly decreased, acid exposure (reflux index) and long reflux episodes were similar, and the longest reflux episode significantly increased [48]. A significant decrease of the reflux index was detected in two other studies [33,55].

In the only study that used intraluminal impedance pH, a slight but not significant decrease in proximal reflux and total number of reflux episodes was noted in 14 infants who were fed carob (0.4 g/100 mL) AR-F compared with SF [51].

Corn starch

In two studies, a casein dominant cornstarch AR-F reduced all pH-metric parameters in 51 and 52 infants, respectively [31,52]. In another RCT, a pregelatinized cornstarch AR-F decreased the reflux index in 87% of infants with a significant difference compared with a SF [53].

Rice

In six infants, a significant reduction in the total number of (acid) reflux episodes was observed but not in the reflux index with rice TF [29]. However, no improvement of reflux parameters was reported in a comparative study that enrolled 52 infants who were fed whey-based 5% rice TFs [31].

In a meta-analysis of AR formula [16], only four studies (using rice [65], corn [52,53], or carob bean gum [33] as a thickening agent) and overall 107 infants were analyzed in terms of reflux parameters measured by pH-monitoring but no statistical effect in the pooled results were observed.

Adverse effects of antiregurgitation formula?

European legislation allows for the supplementation of formula with modified starches up to either 30% of total carbohydrate or 2.0 g/100 mL [30] while the maximum accepted level of locust bean gum is 1 g/100 mL, which requires medical supervision to treat GER (Table 2) [19,20].

Caloric intake

The increased caloric density of thickened formula may benefit only infants who fail to thrive because of regurgitation, vomiting, or inadequate intake. Locust bean gum has no caloric content and is not absorbed; therefore, caloric intake does not increase [27].

Mineral absorption

According to an in vitro study, the absorption of nutrients and mineral bioavailability in infant formula could be impaired by nondigestible carbohydrates [66]. The in vitro model showed that the solubility and dialyzability (measured by atomic absorption spectrophotometer) of calcium was negatively affected by locust bean gum (significantly higher) and modified (pregelatinized) corn and rice starch when added in concentrations >50% of the maximum legal limit. Only locust bean gum (at concentrations of ≥0.5 g/100 mL) had a negative effect on the solubility and dialyzability of iron and zinc [18].

These effects can be related to the higher amount of phytic acid (myoinositol hexaphosphoric acid) in locust bean gum (47 mg/100 g) compared with modified starch (19 mg/100 g in corn; 17 mg/100 g in rice), the gel-forming capacities, and presence of ionizable groups that bind locust bean gum with calcium, iron, and zinc to form unabsorbable complexes and decrease mineral availability [18]. However, an in vivo trial that tested a casein-predominant locust bean gum (0.4 g/100 mL) AR-F in 20 healthy infants from birth to 3 mo of age reported normal growth as well as blood nutritional and mineral parameters that were similar to a whey predominant SF [67]. No difference in blood cholesterol and triacylglycerol levels were observed in 25 infants who were fed for 6 wk with locust bean gum AR-F compared with SF [68].

In all clinical studies with locust bean gum AR-F, neither specific adverse or negative effects on growth were reported [13,33,38,39,46,48,50,51,55]. Currently, locust AR-F contains ≤ 0.5 g/100 mL of bean gum to confer a protective margin of safety in (term) infants but a combination of thickening agents have been proposed [18,27]. The addition of rice cereal to formula at a (high) concentration of 6.5 g/100 mL still resulted in normal bioavailability of calcium and iron in 1 to 3 mo old infants [69]. To compensate the (theoretical) risk of (in vivo) malabsorption, many AR-F also present a higher mineral content compared with SF.

Arsenic load

On the basis of current literature, a risk assessment of the daily intake of rice cereal was conducted by the U.S. Food and Drug Administration in infants and toddlers [57]. Although the hazard quotients for acute intake were consistently below 1.0, the ones for chronic intake exceeded 1.0 for rice cereal with incremental lifetime cancer risks that ranged from $10^{(-6)}$ (50th) to $10^{(-5)}$ (75th percentile). The maximum contaminant level for arsenic in rice cereal reached up to 0.4 mg/kg and should be considered [57].

Bowel movements

Bean gum may act as vegetable fiber with a prebiotic effect that can possibly modify bowel frequency. In three studies with locust AR-F, bowel movements increased in 10% of infants but without severe diarrhea [14,38,39]. No difference in stool consistency or frequency were reported in six other studies [16,40,46,50,56,61].

Conversely, difficulty to defecate occurred in infants who were fed a rice TF at a high concentration (one heaping tablespoonful every 30 mL [29] or 5 g/100 mL [31]). Of 53 infants, 8 developed mild difficulty and 11 reported severe difficulty in defecation during rice-based feedings [56]. A pretreated rice AR-F did not cause constipation [28].

Cough

An increased in coughing has been reported in infants who were fed rice TFs [32] but not those who were fed rice AR-F [28].

Allergy

Risk of allergy to thickening agents is currently unknown. An isolated case of allergy to carob gum in infants has been published [70].

Special concerns in preterm infants

A possible association between thickened feedings and necrotizing enterocolitis in preterm infants has been highlighted [71]. In 2011, the U.S. Food and Drug Administration issued a warning with regard to the use of a thickening agent that contains xanthan gum in infants who are born before 37 wk of gestation and who receive hospital care or are discharged from the hospital within the previous 30 d [3].

Moreover, locust bean gum TFs should be excluded from meals for premature infants or those with a low birth weight [8] because 0.2 g to 0.5 g/100 mL locust bean gum TFs increased the frequency of defecation, metabolic acidosis, and hypokalemia in six infants who were born premature and vomited [72].

Conclusions

The approach for infants who regurgitate consists of parental reassurance and education about position and feeding. AR-F

reduces regurgitation with an effect depending on the thickening agent, concentration, protein ratio, and hydrolysis. Although locust bean gum increases viscosity more than other thickening agents, there is no evidence that one thickener is clinically better than another. AR-F offers the advantage of a balanced composition, controlled viscosity, and calories compared with the addition of thickening agents to a SF. Recent data suggest that thickened HF may also reduce regurgitations and accelerate gastric emptying.

Physicians may consider the use of AR-F in infants with persisting troublesome regurgitations while weighing cost, efficacy, parental concern, and possibly the reduction of the use of unnecessary medications and medical referrals.

References

- Vandenplas Y, Rudolph CD, Di Lorenzo C, Hassall E, Liptak G, Mazur L, et al. Pediatric gastroesophageal reflux clinical practice guidelines: joint recommendations of the North American Society of Pediatric Gastroenterology, Hepatology, and Nutrition and the European Society of Pediatric Gastroenterology, Hepatology, and Nutrition. *J Pediatr Gastroenterol Nutr* 2009;49:498–547.
- Vandenplas Y, Abkari A, Bellaiche M, Benninga M, Chouraqui JP, Cokura F, et al. Prevalence and health outcomes of functional gastrointestinal symptoms in infants from birth to 12 months of age. *J Pediatr Gastroenterol Nutr* 2015;61:531–7.
- Lightdale JR, Gremse DA. Section on Gastroenterology, Hepatology, and Nutrition. Gastroesophageal reflux: management guidance for the pediatrician. *Pediatrics* 2013;131:e1684–95.
- National Institute for Health and Care Excellence. Gastro-oesophageal reflux disease: Recognition, diagnosis and management in children and young people. (Clinical Guideline 193). Available from: <http://www.nice.org.uk/guidance/NG1>. [Accessed 6 December 2013].
- Gierszczak-Bialek D, Konarska Z, Skorka A, Vandenplas Y, Szajewska H. No effect of proton pump inhibitors on crying and irritability in infants: systematic review of randomized controlled trials. *J Pediatr* 2015;166:767–70.
- Savino F, Castagno E. Overprescription of antireflux medications for infants with regurgitation. *Pediatrics* 2008;121:1070.
- Quitadamo P, Papadopoulou A, Wenzl T, Urbanos V, Kneepkens CM, Roman E, et al. European pediatricians' approach to children with GER symptoms: survey of the implementation of 2009 NASPAGHAN-ESPGHAN guidelines. *J Pediatr Gastroenterol Nutr* 2014;58:505–9.
- Vandenplas Y. Thickened infant formula does what it has to do: decrease regurgitation. *Pediatrics* 2009;123:e549–50.
- Nevo N, Rubin L, Tamir A, Levine A, Shaoul R. Infant feeding patterns in the first 6 months: an assessment in full-term infants. *J Pediatr Gastroenterol Nutr* 2007;45:234–9.
- Aggett PJ, Agostoni C, Goulet O, Hernell O, Koletzko B, Lafeber HL, et al. Antireflux or antiregurgitation milk products for infants and young children: a commentary by the ESPGHAN Committee on Nutrition. *J Pediatr Gastroenterol Nutr* 2002;34:496–8.
- Nelson SP, Chen EH, Syniar GM, Christoffel KK. One-year follow-up of symptoms of gastroesophageal reflux during infancy. *Pediatric Practice Research Group, Pediatrics* 1998;102:E67.
- Hegar B, Boediarsa A, Firmansyah A, Vandenplas Y. Investigation of regurgitation and other symptoms of gastroesophageal reflux in Indonesian infants. *World J Gastroenterol* 2004;10:1795–7.
- Hegar B, Rantos R, Firmansyah A, De Schepper J, Vandenplas Y. Natural evolution of infantile regurgitation versus the efficacy of thickened formula. *J Pediatr Gastroenterol Nutr* 2008;47:26–30.
- Iacono G, Vetrano S, Cataldo F, Ziino O, Russo A, Lorello D, et al. Clinical trial with thickened feeding for treatment of regurgitation in infants. *Dig Liver Dis* 2002;34:532–3.
- Martin AJ, Pratt N, Kennedy JD, Ryan P, Ruffin RE, Miles H, et al. Natural history and familial relationships of infant spilling to 9 years of age. *Pediatrics* 2002;109:1061–7.
- Horvath A, Dziechciarz P, Szajewska H. The effect of thickened-feed interventions on gastroesophageal reflux in infants: systematic review and meta-analysis of randomized, controlled trials. *Pediatrics* 2008;122:e1268–77.
- Infante Pina D, Lara-Villoslada F, López Ginés G, Morales Hernández ME. Thickened infant formula, rheological study of the "in vitro" properties. *An Pediatr (Barc)* 2010;72:302–8.
- González-Bermúdez CA, Frontela-Saseta C, López-Nicolás R, Ros-Berruezo G, Martínez-Graciá C. Effect of adding different thickening agents on the viscosity properties and in vitro mineral availability of infant formula. *Food Chem* 2014;159:5–11.
- Scientific Committee on Food. Report of the Scientific Committee on Food on the Revision of Essential Requirements of Infant Formulae and Follow-on

Formulae. Available from: http://ec.europa.eu/food/fs/sc/scf/out199_en.pdf. [Accessed 6 December 2013].

[20] Technical Regulations of the Customs Union. Safety of food additives, flavorings and processing aids. The official website of the Customs Union Commission. Available from: <http://www.tsouz.ru>. [Accessed 23 July 2011].

[21] Aggett PJ, Agostoni C, Axelsson I, Edwards CA, Goulet O, Hernell O, et al. Nondigestible carbohydrates in the diets of infants and young children: a commentary by the ESPGHAN Committee on Nutrition. *J Pediatr Gastroenterol Nutr* 2003;36:329–37.

[22] Menoyo D, Serrano MP, Barrios V, Valencia DG, Lazaro R, Argente J, et al. Cereal type and heat processing of the cereal affect nutrient digestibility and dynamics of serum insulin and ghrelin in weanling pigs. *J Anim Sci* 2011; 89:2793–800.

[23] Lin AH-M, Hamaker BR, Nichols BL. Direct starch digestion by sucrase-isomaltase and maltase-glucoamylase. *J Pediatr Gastroenterol Nutr* 2012; 55:S43–4.

[24] De Vizia B, Ciccarella F, De Cicco N, Auricchio S. Digestibility of starches in infants and children. *J Pediatr* 1975;86:50–5.

[25] Rendleman JA. Hydrolytic action of α -amylase on high amylase starch of low molecular mass. *Biotechnol Appl Biochem* 2000;31:171–8.

[26] Koletsos B, Baker S, Clekhou G, Neto UF, Gopalan S, Hernell O, et al. Global standard for the composition of infant formula: recommendations of an ESPGHAN coordinated international expert group. *J Pediatr Gastroenterol Nutr* 2005;41:584–99.

[27] Meunier L, Garthoff JA, Schaafsma A, Krul L, Schrijver J, van Goudoever JB, et al. Locust bean gum safety in neonates and young infants: an integrated review of the toxicological database and clinical evidence. *Regul Toxicol Pharmacol* 2014;70:155–69.

[28] Vanderhoof JA, Moran JR, Harris CL, Merkel KL, Orenstein SR. Efficacy of a pre-thickened infant formula: a multicenter, double-blind, randomized, placebo-controlled parallel group trial in 104 infants with symptomatic gastroesophageal reflux. *Clin Pediatr (Phila)* 2003;42:483–95.

[29] Khoshoo V, Ross G, Brown S, Edell D. Smaller volume, thickened formulas in the management of gastroesophageal reflux in thriving infants. *J Pediatr Gastroenterol Nutr* 2000;31:554–6.

[30] European Parliament and Council. Directive 2006/141/EC on infant formulae and follow-on formulae. Available from: <http://ec.europa.eu/food>. [Accessed 6 December 2013].

[31] Ramirez-Mayans J, Palacio-del Carmen L, Cervantes-Bustamente R, Mata-Rivera N, Pina-Romero N, Zarate-Mondragon F, et al. Nutritional management of children with GER: a comparison of formulas. *Int Pediatr* 2003; 18:78–82.

[32] Orenstein SR, Shalaby TM, Putnam PE. Thickened feedings as cause of increased coughing when used as therapy for gastroesophageal reflux in infants. *J Pediatr* 1992;121:913–5.

[33] Vandenplas Y, Hachimi IS, Casteels A, Mahler T, Loeb H. A clinical trial with an "antiregurgitation" formula. *Eur J Pediatr* 1994;153:419–23.

[34] Corvaglia L, Mariani E, Aceti A, Galletti S, Falabella G. Extensively hydrolyzed protein formula reduces acid gastro-esophageal reflux in symptomatic preterm infants. *Early Hum Dev* 2013;89:453–5.

[35] Penna FJ, Norton RC, Carvalho AST, Pompeu BC, Penna GC, Ferreira MF, et al. Comparison between pre-thickened and home-thickened formulas in gastroesophageal reflux treatment. *J Pediatr* 2003;79:49–54.

[36] Benini L, Castellani G, Brightenti F, Heaton KW, Brentegani MT, Casiraghi MC, et al. Gastric emptying of a solid meal is accelerated by the removal of dietary fiber naturally present in food. *Gut* 1995;36:825–30.

[37] Fabiani E, Bolli V, Pieroni G, Corrado G, Carlucci A, De Giacomo C, et al. Effect of a water-soluble fiber (galactomannans)-enriched formula on gastric emptying time of regurgitating infants evaluated using an ultrasound technique. *J Pediatr Gastroenterol Nutr* 2000;31:248–50.

[38] Miyazawa R, Tomomasa T, Kaneko H, Morikawa A. Effect of formula thickened with locust bean gum on gastric emptying in infants. *J Paediatr Child Health* 2006;42:808–12.

[39] Miyazawa R, Tomomasa T, Kaneko H, Arakawa H, Morikawa A. Effect of formula thickened with reduced concentration of locust bean gum on gastroesophageal reflux. *Acta Paediatr* 2007;96:910–4.

[40] Vivatvanin B, Buachum V. Effect of carob bean on gastric emptying time in Thai infants. *Asia Pac J Clin Nutr* 2003;12:193–7.

[41] Chao HC, Vandenplas Y. Effect of cereal-thickened formula and upright positioning on regurgitation, gastric emptying, and weight gain in infants with regurgitation. *Nutrition* 2007;23:23–8.

[42] Chao HC, Vandenplas Y. Comparison of the effect of a cornstarch thickened formula and strengthened regular formula on regurgitation, gastric emptying and weight gain in infantile regurgitation. *Dis Esophagus* 2007; 20:155–60.

[43] Billeaud C, Guillet J, Sandler B. Gastric emptying in infants with or without gastroesophageal reflux according to the type of milk. *Eur J Clin Nutr* 1990; 44:577–83.

[44] Tolia V, Lin CH, Kuhns LR. Gastric emptying using three different formulas in infants with gastroesophageal reflux. *J Pediatr Gastroenterol Nutr* 1992; 15:297–301.

[45] Staelens S, Van den Driessche M, Barclay D, Carrié-Faessler AL, Haschke F, Verbeke K, et al. Gastric emptying in healthy newborns fed an intact protein formula, a partially and an extensively hydrolyzed formula. *Clin Nutr* 2008; 27:264–8.

[46] Vandenplas Y, Devreker T, Hauser B. A double-blinded, prospective trial with a new formula in distressed and regurgitating infants. *Open Nutr J* 2008;2: 48–50.

[47] Orenstein SR, Magill HL, Brooks P. Thickening of infant feedings for therapy of gastroesophageal reflux. *J Pediatr* 1987;110:181–6.

[48] Vandenplas Y, Sacre L. Milk-thickening agents as a treatment for gastroesophageal reflux. *Clin Pediatr (Phila)* 1987;26:66–8.

[49] Huang RC, Forbes DA, Davies MW. Feed thickener for newborn infants with gastroesophageal reflux. *Cochrane Database Syst Rev* 2002;(3): CD003211.

[50] Vandenplas Y, Leluyer B, Cazaubiel M, Housez B, Bocquet A. Double-blind comparative trial with two anti-regurgitation formulae. *J Pediatr Gastroenterol Nutr* 2013;57:389–93.

[51] Wenzl TG, Schneider S, Scheele F, Silny J, Heimann G, Skopnik H. Effects of thickened feeding on gastroesophageal reflux in infants: a placebo-controlled crossover study using intraluminal impedance. *Pediatrics* 2003;111:E355–9.

[52] Xiniás I, Mouane N, Le Luyer B, Spiroglou K, Demertzidou V, Hauser B, et al. Cornstarch thickened formula reduced oesophageal acid exposure time in infants. *Dig Liver Dis* 2005;37:23–7.

[53] Moukarzel AA, Abdellnour H, Akatcharian C. Effects of a prethickened formula on esophageal pH and gastric emptying of infants with GER. *J Clin Gastroenterol* 2007;41:823–9.

[54] Moya M, Juste M, Cortes E, Auxina A, Ortiz I. Clinical evaluation of the different therapeutic possibilities in the treatment of infant regurgitation. *Rev Esp Pediatr* 1999;55:219–23.

[55] Borrelli O, Salvia G, Campanozzi A, Franco MT, Moreira FL, Emiliano M, et al. Use of a new thickened formula for treatment of symptomatic gastroesophageal reflux in infants. *Ital J Gastroenterol Hepatol* 1997;29:237–42.

[56] Mascarenhas R, Landry L, Khoshoo V. Difficulty in defecation in infants with gastroesophageal reflux treated with smaller volume feeds thickened with rice cereal. *Clin Pediatr (Phila)* 2005;44:671–3.

[57] Shibata T, Meng C, Umoren J, West H. Risk assessment of arsenic in rice cereal and other dietary sources for infants and toddlers in the U.S. *Int J Environ Res Public Health* 2016;13:361.

[58] Ostrom KM, Jacobs JR, Merritt RJ, Murray RD. Decreased regurgitation with a soy formula containing added soy fiber. *Clin Pediatr (Phila)* 2006;45:29–36.

[59] Ummarino D, Miele E, Martinelli M, Scarpato E, Crocetto F, Sciorio E, et al. Effect of magnesium alginate plus simethicone on gastroesophageal reflux in infants. *J Pediatr Gastroenterol Nutr* 2015;60:230–5.

[60] Savino F. Advances in the management of digestive problems during the first months of life. *Acta Paediatr Suppl* 2005;94:120–4.

[61] Orenstein SR, McGowan JD. Efficacy of conservative therapy as taught in the primary care setting for symptoms suggesting infant gastroesophageal reflux. *J Pediatr* 2008;152:310–4.

[62] Vandenplas Y, De Greef E, ALLAR-study group. A randomized double-blind trial comparing a thickened and non-thickened extensively hydrolyzed casein formula: results after one month. *Acta Paediatr* 2014;103:e243–50.

[63] Dupont C, Bradatan E, Soulaines P, Nocerino R, Berni-Canani R. Tolerance and growth in children with cow's milk allergy fed a thickened extensively hydrolyzed casein-based formula. *BMC Pediatr* 2016;16:96.

[64] Corvaglia L, Aceti A, Mariani E, Legnani E, Ferlini M, Raffaelli G, et al. Lack of efficacy of a starch-thickened preterm formula on gastroesophageal reflux in preterm infants: a pilot study. *J Matern Fetal Neonatal Med* 2012; 25:2735–8.

[65] Tolia V, Wuerth A, Shashidhar H, Peters JM, Lin CH. A prospective study with an antiregurgitation (AR) formula in infants with gastroesophageal reflux (GER) symptoms. *Gastrointest Endosc* 1999;49:AB186–9.

[66] Bosscher D, Van Caillie-Bertrand M, Van Dyck K, Robberecht H, Van Cauwenbergh R, Deelstra H. Thickening of infant formula with digestible and indigestible carbohydrate: availability of calcium, iron and zinc in vitro. *J Pediatr Gastroenterol Nutr* 2000;30:373–8.

[67] Levchenko E, Hauser B, Vandenplas Y. Nutritional value of an "antiregurgitation" formula. *Acta Gastroenterol Belg* 1998;61:285–7.

[68] Savino F. Allergy to carob gum in an infant. *J Pediatr Gastroenterol Nutr* 1999; 29:475–6.

[69] Lifschitz CH, Abrams SA. Addition of rice cereal to formula does not impair mineral bioavailability. *J Pediatr Gastroenterol Nutr* 1998;26:175–8.

[70] Savino F, Cresi F, Peltrani A, Oggero R, Mostert M. Serum cholesterol in infants fed with an anti-regurgitation milk formula containing bean gum. *Acta Paediatr* 1999;88:102–3.

[71] Clarke P, Robinson MJ. Thickening milk feeds may cause necrotizing enterocolitis. *Arch Dis Child Fetal Neonatal Ed* 2004;89:F280.

[72] Sievers E, Schaub J. Antireflux or antiregurgitation milk products. *J Pediatr Gastroenterol Nutr* 2003;36:418.